Can Decentralization Improve Social Welfare?

Yexuan Li

Tsinghua University

liyexuan23@mails.tsinghua.edu.cn

July 15, 2025

Outline

- Motivation
- 2 Model Setup
- Model Extensions
- 4 Conclusion

A case study based on poll data

Why Study Policy Coordination on Graphs?

- States/agents interact with neighbors in a network.
- However, former studies don't care border cost and are not quantified.
- Trade-off: Local preference vs border cost.
- We also study dynamic evolution of network.

Model Definition

Graph Structure

$$G = (P, L, F, u, c)$$

- Two policies: $pol_i \in \{0,1\}$, for $i \in \{1,2,...,n\}$.
- Preferences $f_i = (f_{i,1}, f_{i,2})$.
- Utility:

$$u_i = \begin{cases} f_{i,1} & \text{if } pol_i = 1, \\ f_{i,2} & \text{if } pol_i = 0. \end{cases}$$

Cost:

$$c_{ij} = \begin{cases} 0 & \textit{pol}_i = \textit{pol}_j, \\ f_{i,2} + f_{j,1} & \textit{pol}_i = 1, \textit{pol}_j = 0, \\ f_{i,1} + f_{j,2} & \textit{pol}_i = 0, \textit{pol}_j = 1. \end{cases}$$

Social Welfare and Optimization

Total socail welfare:

$$\tau = \sum_{i} \left(u_i - \frac{1}{2} \sum_{j}' c_{ij} \right)$$

• Goal: Maximize τ over all policy profiles, i.e.

$$\mathit{pol} = \arg\max_{\mathit{pol} \in \mathsf{POL}} \tau.$$

Definition

$$\mu(\mathcal{G}) = \max_{pol \notin \{\mathbf{0},\mathbf{1}\}} \tau - \max_{pol \in \{\mathbf{0},\mathbf{1}\}} \tau$$

Measures welfare gain from decentralized policies.

Three-State Case

- States 1, 2, 3 with preferences (a, 1-a), (b, 1-b), (c, 1-c).
- Complete graph.
- Compute τ for each of 8 policy profiles.

Preference Region Visualization

- Clear boundary: a + b + c = 1.5.
- The powerful cost terms drives coordination behavior.

Model Extension

- Introduce $b_{ij} \in [0,1]$ to control c_{ij} .
- When $b_{ij} = 0$: fully decentralized (no cross-border cost).
- When $b_{ij} = 1$: fully centralized model.

$$\tau = \sum_{i} \left(u_{i} - \frac{1}{2} \sum_{j}^{\prime} b_{ij} c_{ij} \right)$$

Dynamic Model

$$\begin{cases} \dot{f}_{i,1}(t) = \eta \cdot (1 - f_{i,1}(t)), \\ \dot{f}_{i,2}(t) = -\eta \cdot f_{i,2}(t), \end{cases} \text{ if } pol_i(t) = 1;$$
 (1)

$$\begin{cases} \dot{f}_{i,1}(t) = -\eta \cdot f_{i,1}(t), \\ \dot{f}_{i,2}(t) = \eta \cdot (1 - f_{i,2}(t)), \end{cases} \text{ if } pol_i(t) = 2.$$
 (2)

Policy will influence regional preferences.

Competition and Strategy

Example (Misreporting in Two-state Model)

Let state 1 have a preference of $f_{1,1}=0.9$ for policy 1, and state 2 have a preference of $f_{2,1}=0.4$. Let b_{12} denote the border influence coefficient. Here we consider party A misreporting some of its supporters in state 1, whose number is Δ .

Summary and Outlook

- Our work combines total welfare, dynamics and competition.
- Future: defining Nash Equilibrium, complexity analysis and real data modification.